7 research outputs found

    Object-relational spatio-temporal databases

    Get PDF
    We present an object-relational model for uniform handling of dimensional data. Spatial, temporal, spatio-temporal and ordinary data are special cases of dimensional data. The said uniformity is achieved through the concept of dimension alignment, which automatically allows lower dimensional data and queries to be used in a higher dimensional context;Unlike ordinary data, dimensional objects are interwoven. We introduce object identity (oid) fragments to circumvent data redundancy at logical level. Computed types are placed appropriately in a type hierarchy to allow maximal use of existing methods. A query language for spatio-temporal data is presented for associative navigation. A framework for algebraic optimization of the query language is suggested;A pattern matching language is designed for complex querying of spatio-temporal data which seamlessly extends the associative navigation in our query language. The pattern matching language recognizes special features of time and space providing an appropriate level of abstraction for application development compared to traditional languages. This reduces the need for embedding the query language in a lower level language such as C++. The pattern matching language is also dimensionally extensible. The pattern matching allows query of data with multiple granularities and continuous data. It also provides hooks for direct query of scientific data (observations);Our model is dimensionally extensible, and also an extension of a relational model for dimensional data. Moreover the dimensionality and addition of oids are mutually orthogonal concepts. Thus starting from classical ordinary data, one may migrate to higher forms of relational or object-relational data in any sequence, without having to recode application software. Our model does not deal with complex objects, which is left as a future extension

    Risk of thyroid dysfunction associated with mRNA and inactivated COVID-19 vaccines: a population-based study of 2.3 million vaccine recipients

    Get PDF
    Background: In view of accumulating case reports of thyroid dysfunction following COVID-19 vaccination, we evaluated the risks of incident thyroid dysfunction following inactivated (CoronaVac) and mRNA (BNT162b2) COVID-19 vaccines using a population-based dataset. / Methods: We identified people who received COVID-19 vaccination between 23 February and 30 September 2021 from a population-based electronic health database in Hong Kong, linked to vaccination records. Thyroid dysfunction encompassed anti-thyroid drug (ATD)/levothyroxine (LT4) initiation, biochemical picture of hyperthyroidism/hypothyroidism, incident Graves’ disease (GD), and thyroiditis. A self-controlled case series design was used to estimate the incidence rate ratio (IRR) of thyroid dysfunction in a 56-day post-vaccination period compared to the baseline period (non-exposure period) using conditional Poisson regression. / Results: A total of 2,288,239 people received at least one dose of COVID-19 vaccination (57.8% BNT162b2 recipients and 42.2% CoronaVac recipients). 94.3% of BNT162b2 recipients and 92.2% of CoronaVac recipients received the second dose. Following the first dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.864, 95% CI 0.670–1.114; CoronaVac: IRR 0.707, 95% CI 0.549–0.912), LT4 initiation (BNT162b2: IRR 0.911, 95% CI 0.716–1.159; CoronaVac: IRR 0.778, 95% CI 0.618–0.981), biochemical picture of hyperthyroidism (BNT162b2: IRR 0.872, 95% CI 0.744–1.023; CoronaVac: IRR 0.830, 95% CI 0.713–0.967) or hypothyroidism (BNT162b2: IRR 1.002, 95% CI 0.838–1.199; CoronaVac: IRR 0.963, 95% CI 0.807–1.149), GD, and thyroiditis. Similarly, following the second dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.972, 95% CI 0.770–1.227; CoronaVac: IRR 0.879, 95%CI 0.693–1.116), LT4 initiation (BNT162b2: IRR 1.019, 95% CI 0.833–1.246; CoronaVac: IRR 0.768, 95% CI 0.613–0.962), hyperthyroidism (BNT162b2: IRR 1.039, 95% CI 0.899–1.201; CoronaVac: IRR 0.911, 95% CI 0.786–1.055), hypothyroidism (BNT162b2: IRR 0.935, 95% CI 0.794–1.102; CoronaVac: IRR 0.945, 95% CI 0.799–1.119), GD, and thyroiditis. Age- and sex-specific subgroup and sensitivity analyses showed consistent neutral associations between thyroid dysfunction and both types of COVID-19 vaccines. / Conclusions: Our population-based study showed no evidence of vaccine-related increase in incident hyperthyroidism or hypothyroidism with both BNT162b2 and CoronaVac

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Object-relational spatio-temporal databases

    No full text
    We present an object-relational model for uniform handling of dimensional data. Spatial, temporal, spatio-temporal and ordinary data are special cases of dimensional data. The said uniformity is achieved through the concept of dimension alignment, which automatically allows lower dimensional data and queries to be used in a higher dimensional context;Unlike ordinary data, dimensional objects are interwoven. We introduce object identity (oid) fragments to circumvent data redundancy at logical level. Computed types are placed appropriately in a type hierarchy to allow maximal use of existing methods. A query language for spatio-temporal data is presented for associative navigation. A framework for algebraic optimization of the query language is suggested;A pattern matching language is designed for complex querying of spatio-temporal data which seamlessly extends the associative navigation in our query language. The pattern matching language recognizes special features of time and space providing an appropriate level of abstraction for application development compared to traditional languages. This reduces the need for embedding the query language in a lower level language such as C++. The pattern matching language is also dimensionally extensible. The pattern matching allows query of data with multiple granularities and continuous data. It also provides hooks for direct query of scientific data (observations);Our model is dimensionally extensible, and also an extension of a relational model for dimensional data. Moreover the dimensionality and addition of oids are mutually orthogonal concepts. Thus starting from classical ordinary data, one may migrate to higher forms of relational or object-relational data in any sequence, without having to recode application software. Our model does not deal with complex objects, which is left as a future extension.</p

    An Algebra for belief persistence in multilevel security databases

    Get PDF
    Abstract. In a multilevel security environment, the security levels form a hierarchy which is generally assumed to be a lattice. A user can see not only its own information, but also information belonging to lower users. In a multilevel security database, different users have different beliefs (versions of information) about the same real world object. In this paper we present a relational model SecDB for multilevel security data. We also present an SQL-like language SecSQL for querying security information. For a given level, a tuple consists of all the differing beliefs about the same real world object. Therefore, the model provides a built-in coherence to different beliefs of the same real world object. For an operator to be well defined, its application should preserve beliefs and coherence. This persistence of belief and coherence is achieved through the concept of an anchor borrowed from an earlier work. On one hand (in addition to the usual database queries) SecSQL yields itself naturally to formulation of security related queries, yet on the other hand the algebraic operators yield natural identities which hold a good promise of algebraic optimization. Index terms. Databases, security, database security, multilevel security, relational databases, beliefs, belief data, dimensional databases. 1

    The Seaview security model. IEEE Transactions on Software Engineering,

    No full text
    [NG92] Nair, Sunil and Shashi K. Gadia. Algebraic optimization in a relational model for temporal databases, Proc. First International Conference on Information and Knowledge Management, pp 169-176, 1992. [PMP94] Pissinou, Niki, Kia Makki, and E. K. Park. Towards a framework for integrating secure models and temporal databases. Proc. of Third Internationa
    corecore